Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation.
نویسندگان
چکیده
Pseudomonas putida KT2440 is an efficient colonizer of the rhizosphere of plants of agronomical and basic interest. We have demonstrated that KT2440 can protect the model plant Arabidopsis thaliana against infection by the phytopathogen Pseudomonas syringae pv. tomato DC3000. P. putida extracellular haem-peroxidase (PP2561) was found to be important for competitive colonization and essential for the induction of plant systemic resistance. Root exudates of plants elicited by KT2440 exhibited distinct patterns of metabolites compared with those of non-elicited plants. The levels of some of these compounds were dramatically reduced in axenic plants or plants colonized by a mutant defective in PP2561, which has increased sensitiveness to oxidative stress with respect to the wild type. Thus high-level oxidative stress resistance is a bacterial driving force in the rhizosphere for efficient colonization and to induce systemic resistance. These results provide important new insight into the complex events that occur in order for plants to attain resistance against foliar pathogens.
منابع مشابه
Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants
Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and...
متن کاملConstruction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications.
Pseudomonas putida KT2440 is frequently used in biotechnical research and applications due to its metabolic versatility and organic solvent resistance. A major drawback for a broad application is the inability of the bacterium to survive and grow under anoxic conditions, which prohibits the production of oxygen-sensitive proteins and metabolites. To develop a P. putida strain, which is able to ...
متن کاملInterplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440.
According to in silico analysis, the genome of Pseudomonas putida KT2440 encodes at least four Zn/Cd/Pb efflux transporters-two P-type ATPases (CadA1 and CadA2) and two czc chemiosmotic transporters (CzcCBA1 and CzcCBA2). In this study we showed that all these transporters are functional, but under laboratory conditions only two of them were involved in the mediation of heavy metal resistance i...
متن کاملDeterminants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants.
SUMMARY Pseudomonas putida WCS358 is a plant growth-promoting rhizobacterium originally isolated from the rhizosphere of potato. It can suppress soil-borne plant diseases by siderophore-mediated competition for iron, but it has also been reported to result in induced systemic resistance (ISR) in Arabidopsis thaliana. Bacterial determinants of this strain involved in inducing systemic resistance...
متن کاملTranscriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1.
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology reports
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2010